
I have a dream!

(a look at some of our developer tools)

Simon Wheatley, @simonwheatley

© Camdiluv ♥ - https://www.flickr.com/photos/camdiluv/4441155157/in/photostream/

https://www.flickr.com/photos/camdiluv/4441155157/in/photostream/

I’m Simon, nice to meet you all

I’m Simon Wheatley, and I’ve been shouting incoherently from the back of the room.

Working with WordPress since 15 December 2005.

Founded on 25 January 2012, on the anniversary of the day Mike left the fateful comment on Matt’s blog

© Christian Payne - http://www.flickr.com/photos/christianpayne/3524859632/in/photostream/

I work with Stephen Fry on all of his WordPress development.

http://www.flickr.com/photos/christianpayne/3524859632/in/photostream/

© Camdiluv ♥ - https://www.flickr.com/photos/camdiluv/4441155157/in/photostream/

I have a dream…

https://www.flickr.com/photos/camdiluv/4441155157/in/photostream/

…about development environments

© Christian Senger - https://www.flickr.com/photos/30928442@N08/6343274075

I want a common shared development environment for our team.
!
In this talk we’re going to cover:

* How we run the web servers for us to develop and test

* How we set up projects on the development web server

* How we manage and access the code

* How we deploy our changes
!
Very fast skim. We’ll dip into a bit of tech and code, but not much.
!
* Vagrant

* VVV

* Bashscript

* Public private key encryption

* Git

* Composer
!
So why are we doing this?

https://www.flickr.com/photos/30928442@N08/6343274075

Easier to get started

© Mark Walker - https://www.flickr.com/photos/markwalker/3749673425

https://www.flickr.com/photos/markwalker/3749673425

Easier to develop

© NASA/MSFC/David Higginbotham - https://www.flickr.com/photos/nasamarshall/12308145634

https://www.flickr.com/photos/nasamarshall/12308145634

Easier to deploy

© Elle Jay Fisher - https://www.flickr.com/photos/ellejayfish/2815231166

https://www.flickr.com/photos/ellejayfish/2815231166

We base our development environments on Vagrant. Vagrant is…

Define a machine (or machines)

© Don - https://www.flickr.com/photos/donsolo/2886355241

…a tool for defining a virtual machine, or machines.

https://www.flickr.com/photos/donsolo/2886355241

Bring your own provisioner

© Brett Davies - https://www.flickr.com/photos/photosightfaces/9696940889

It allows you to use a variety of methods to provision that machine with everything you’ll need, so you need a web server, you need PHP, and so on.

https://www.flickr.com/photos/photosightfaces/9696940889

VVV, Varying Vagrant Vagrants, is a community project which originated with 10Up, an agency in the US. It’s a WordPress specific Vagrant setup, which
uses Bashscript to do the provisioning.

VVV gives us the Nginx web server…

…it gives us MySQL as a DB server…

…it gives us PHP…
!
…and a ton more stuff under the hood, like PHPUnit for testing, code sniffers, tools for WordPress localisation, etc, etc.

Including some WordPress development sites for testing and if you want to help with Core WordPress development (which we do, at CFTP).
!
So if you’re developing a plugin or a theme, you can just load up your plugin or theme into one of the WordPress development sites and go.

© Christian Senger - https://www.flickr.com/photos/30928442@N08/6343274075

We have a development environment!

We’ve arrived! We have a development environment!

https://www.flickr.com/photos/30928442@N08/6343274075

Party time!

© Mircea - https://www.flickr.com/photos/morphomir/2407451929

It’s party time, let’s get working…

https://www.flickr.com/photos/morphomir/2407451929

Nearly…

© James Emery - https://www.flickr.com/photos/emeryjl/506966918

…well, not quite. For a Project, rather than plugin or core development, we now need to set up some more things.

https://www.flickr.com/photos/emeryjl/506966918

What does a project look like?

© Russ - https://www.flickr.com/photos/89119745@N00/8098903775

So what does a project look like?
!
We’re going to need the web server to know about the project site we’re developing. We’re going to need a domain name we can type into a browser to see
the site as we develop it. We’re going to need the files for the project. We’re going to need a database.

https://www.flickr.com/photos/89119745@N00/8098903775

Auto Site Setup

© Steve Jurvetson - https://www.flickr.com/photos/jurvetson/6219463656/in/photostream/

For this, for setting up a project site, we use VVV’s Auto Site Setup, which was created by Weston Ruter, of X-Team, Jeremy Felt, who leads VVV, and
myself.
!
To use it, you create a folder in the www directory of your Vagrant, which has three files in.

https://www.flickr.com/photos/jurvetson/6219463656/in/photostream/

vvv-hosts

The first, vvv-hosts, defines the domain names.

vvv-nginx.conf

The second, vvv-nginx.conf, tells the webserver, Nginx, about your site.

vvv-init.sh

The third, vvv-init.sh, is a script that you write and which you will use to pull in your code, plugins, themes, and so forth, so you can work on the site.

!

vvv/www/my-project/	
vvv/www/my-project/vvv-hosts	
vvv/www/my-project/vvv-nginx.conf	
vvv/www/my-project/vvv-init.sh

For each project, you’re going to have a new folder in the www folder, which is within your VVV vagrant folder.

vvv-hosts

vvv-hosts	
# Add as many hostnames 	
# as you need here	
site-name.dev	
subdomain.site-name.dev	
another.site-name.dev

These get put into both your real and virtual machine’s /etc/hosts files. /etc/hosts is a way of faking DNS, so your web browser knows which server to talk
to about your project site.

vvv-nginx.conf

This one might sound scary, but it’s not.

vvv-nginx.conf	
server {	
 listen	 80;	
 listen 	443 ssl;	
 server_name	site-name.dev;	
!

 root		 {vvv_path_to_folder}/htdocs;	
!

 include	/etc/nginx/nginx-wp-common.conf;	
}

Pretty simple template, this configures your project site on your VVV Nginx web server. The blue bit gets replaced

vvv-nginx.conf	
server {	
 listen	 80;	
 listen 	443 ssl;	
 server_name	site-name.dev *.site-
name.dev;	
!

 root		 {vvv_path_to_folder}/htdocs;	
!

 include	/etc/nginx/nginx-wp-common.conf;	
}

vvv-init.sh

vvv-init.sh is the heart of the system. This script is where you tell WordPress to assemble your project, get your code, create your database and so forth.
!
We’ll walk through the various tasks that this init script will need to do.
!
So the first issue we are probably going to hit here, is…

https://github.com/cftp/vvv-init/

!!
You can see the work in progress starter project on GitHub, that I use to setup a new project. It’s lacking in documentation, but you might find it
interesting. I’m also writing a blogpost series about how all this works, first post is published and the second is half written.

https://github.com/cftp/vvv-init/

Private repositories

© Markus Schöpke - https://www.flickr.com/photos/markusschoepke/72431367

…is if we keep our code in private repositories, as we tend to for client projects.
!
The init script is running headless, meaning no user input, so we can’t enter passwords and we can’t answer any questions the script has during execution.
This is a problem when we put our code in private repositories.

https://www.flickr.com/photos/markusschoepke/72431367

Our robot friend

© Kristof - https://www.flickr.com/photos/legoalbert/8868875522

To solve this problem, we’re going to create a robot friend.
!
He is going to have an account on all our private repositories on GitHub, GitLab, Bitbucket, etc. We care very little about his privacy, his login credentials
are going to be distributed with every project, so it’s very important that his account can NOT write to anything.
!
He’s going to use public/private key encryption to log in to all our private code repositories and get stuff for us.
!
We’re going to give his public AND private key to every developer working on the project.

https://www.flickr.com/photos/legoalbert/8868875522

Authentication

We need the script to authenticate as our robot friend.

Man in the middle attack!

We need the script to recognise servers even if it hasn’t seen them before. Otherwise it’s going to FREAK OUT. If you’ve used SSH, you’ll remember the
“MAN IN THE MIDDLE ATTACK” message you always have to clear through.

vvv-init.sh	
# Prepopulating known good host signatures	
mkdir -p ~/.ssh	
touch ~/.ssh/known_hosts	
IFS=$'\n'	
for HOST in $(cat "ssh/known_hosts"); do	
 # …loop over and add the hosts if	
 # not already present…	
done	
!

http://tmx0009603586.com/help/en/
entpradmin/Howto_KHCreate.html

Load in the signatures of the servers we need to contact, so we will “know” them when we see them.

http://tmx0009603586.com/help/en/entpradmin/Howto_KHCreate.html

vvv-init.sh	
# Loading a key for a private repository	
!

ssh-agent bash -c \	
 "ssh-add ssh/cftp_deploy_id_rsa; \	
 git clone $REPO_SSH_URL htdocs;"	

Now we can use ssh-agent to load up our robot friend’s private key, so we can authenticate as him. Then pull down the Git repository.

vvv-init.sh	
# Create the database if it’s not there	
!

mysql -u root --password=root \	
 -e "CREATE DATABASE IF NOT EXISTS \	
 $DB_NAME; GRANT ALL PRIVILEGES ON \	
 $DB_NAME.* TO wp@localhost \	
 IDENTIFIED BY 'wp';"	

A quick command to create the database and give our WP user some credentials.

vvv-init.sh	
# Create WordPress config	
!

if [! -f htdocs/wp-config.php]; then	
 wp core config --dbname="$DB_NAME" \	
 --dbuser="wp" --dbpass="wp" \	
 --dbhost="localhost" \	
 --extra-php <<PHP	
$EXTRA_CONFIG	
PHP	
fi

!

vvv/www/my-project/	
vvv/www/my-project/htdocs/	
vvv/www/my-project/htdocs/(project stuff)	
vvv/www/my-project/vvv-hosts	
vvv/www/my-project/vvv-nginx.conf	
vvv/www/my-project/vvv-init.sh

Once this has all run, for our projects, we not have an htdocs folder which contains all the project files, WordPress, etc, etc.

So let’s talk a bit about Composer.

Define your structure

© Popupology - https://www.flickr.com/photos/popupology/4750769171/

Composer is a system for defining what you want in your project, using a (roughly) human readable JSON file. The dependencies can be pulled in as plugins
from WordPress.org…

https://www.flickr.com/photos/popupology/4750769171/

Separate repositories

© Glyn Young - https://www.flickr.com/photos/glynlowe/8494249993

… or each as separate repositories. This is the bit that really works for us. So each of our plugins within each of our projects is a separate repository, and
changes to one can be pulled into all.
!
So if John is working on a plugin which handles organising content by popularity, that plugin can be easily pulled into multiple projects in a developer
friendly format. In it’s own Git repository. So when we fix a bug, or add functionality, on one project the changes can be pushed back to GitHub or
wherever, and the other project can pull those changes in.

https://www.flickr.com/photos/glynlowe/8494249993

© Elle Jay Fisher - https://www.flickr.com/photos/ellejayfish/2815231166

Deployment

Our final step is deployment. Getting the site live, or pushing the changes to the live site.

https://www.flickr.com/photos/ellejayfish/2815231166

© Glyn Young - https://www.flickr.com/photos/glynlowe/8494249993

Separate repositories

© See-ming Lee - http://www.flickr.com/photos/seeminglee/4556156477/in/photostream/

Composer has given us good flexibility in allowing us to have all our nicely separated repositories, but now we need to bring everything together; perhaps
into a single repository so we can use Git push (like with WPEngine) , perhaps to SFTP up.

https://www.flickr.com/photos/glynlowe/8494249993
http://www.flickr.com/photos/seeminglee/4556156477/in/photostream/

© zev - https://www.flickr.com/photos/fiddleoak/6777207215

Build script!

Enter our build script. The build script pulls together all of our requirements, pulls down a Git repository which we use to keep track of all deployed
changes…

https://www.flickr.com/photos/fiddleoak/6777207215

Packaged

© Edward Baker - https://www.flickr.com/photos/edwbaker/4268008033

…and packages it up neatly to go. We can now SFTP, or Git push to deploy, as the hosting company allows.

https://www.flickr.com/photos/edwbaker/4268008033

© Elle Jay Fisher - https://www.flickr.com/photos/ellejayfish/2815231138/

Deploy!

We have lift off.

https://www.flickr.com/photos/ellejayfish/2815231138/

Are we there yet?

© Joey Rozier - https://www.flickr.com/photos/mrjoro/89187454

So, are we there yet? The system is solid, the way we work with it needs to be finessed.
!
* We need to refined, solid, tested processes

* Most importantly, we need solid documentation, to ensure people know how to work through the processes

https://www.flickr.com/photos/mrjoro/89187454

P.S. we’re looking for developers
(simonw@codeforthepeople.com)

© Yaniv Golan - https://www.flickr.com/photos/yanivg/2384546987

https://www.flickr.com/photos/yanivg/2384546987

questions?

© Tom - http://www.flickr.com/photos/an_untrained_eye/6630719431/

Thanks for listening (or reading)!

http://www.flickr.com/photos/rcsj/400758302/sizes/l/in/photostream/

